Solving a data science problem usually requires multiple steps. These steps can include extracting and transforming data, training a model, and deploying the model into production.
In this session, we'll discuss how to specify those steps with Python into an ML pipeline. We'll show how to create a Kubeflow Pipeline, a component of the Kubeflow open-source project. The audience will learn about how to integrate TensorFlow Extended components into the pipeline, and how to deploy the pipeline to the hosted Cloud AI Pipelines environment on Google Cloud. The key takeaway is how to improve reuse and reproducibility of the machine learning process.